Airway obstruction due to bronchial vascular injury after sulfur mustard analog inhalation.
نویسندگان
چکیده
RATIONALE Sulfur mustard (SM) is a frequently used chemical warfare agent, even in modern history. SM inhalation causes significant respiratory tract injury, with early complications due to airway obstructive bronchial casts, akin to those seen after smoke inhalation and in single-ventricle physiology. This process with SM is poorly understood because animal models are unavailable. OBJECTIVES To develop a rat inhalation model for airway obstruction with the SM analog 2-chloroethyl ethyl sulfide (CEES), and to investigate the pathogenesis of bronchial cast formation. METHODS Adult rats were exposed to 0, 5, or 7.5% CEES in ethanol via nose-only aerosol inhalation (15 min). Airway microdissection and confocal microscopy were used to assess cast formation (4 and 18 h after exposure). Bronchoalveolar lavage fluid (BALF) retrieval and intravascular dye injection were done to evaluate vascular permeability. MEASUREMENTS AND MAIN RESULTS Bronchial casts, composed of abundant fibrin and lacking mucus, occluded dependent lobar bronchi within 18 hours of CEES exposure. BALF contained elevated concentrations of IgM, protein, and fibrin. Accumulation of fibrin-rich fluid in peribronchovascular regions (4 h) preceded cast formation. Monastral blue dye leakage identified bronchial vessels as the site of leakage. CONCLUSIONS After CEES inhalation, increased permeability from damaged bronchial vessels underlying damaged airway epithelium leads to the appearance of plasma proteins in both peribronchovascular regions and BALF. The subsequent formation of fibrin-rich casts within the airways then leads to airways obstruction, causing significant morbidity and mortality acutely after exposure.
منابع مشابه
Airway tissue factor-dependent coagulation activity in response to sulfur mustard analog 2-chloroethyl ethyl sulfide.
Acute lung injury is a principal cause of morbidity and mortality in response to mustard gas (SM) inhalation. Obstructive, fibrin-containing airway casts have recently been reported in a rat inhalation model employing the SM analog 2-chloroethyl ethyl sulfide (CEES). The present study was designed to identify the mechanism(s) causing activation of the coagulation cascade after CEES-induced airw...
متن کاملTwo Lung Cancer Development-Related Genes, Forkhead Box M1 (FOXM1) and Apolipoprotein E (APOE), are overexpressed in Bronchial of Patients after Long-Term Exposure to Sulfur Mustard
Sulfur mustard (SM) is a strong alkylating and mutagenic compound that targets humanairway system. We considered the expression of Forkhead box M1 (FOXM1) and apolipoproteinE (APOE) genes, which are responsible for cell proliferation, differentiation, tumorigenesis,and increased risk of lung cancer, in the lung bronchial tissue of patients exposed to SM.After performing pulmonary functional tes...
متن کاملPostexposure application of Fas receptor small-interfering RNA to suppress sulfur mustard-induced apoptosis in human airway epithelial cells: implication for a therapeutic approach.
Sulfur mustard (SM) is a vesicant chemical warfare and terrorism agent. Besides skin and eye injury, respiratory damage has been mainly responsible for morbidity and mortality after SM exposure. Previously, it was shown that suppressing the death receptor (DR) response by the dominant-negative Fas-associated death domain protein prior to SM exposure blocked apoptosis and microvesication in skin...
متن کاملAcute morphological and toxicological effects in a human bronchial coculture model after sulfur mustard exposure.
Sulfur mustard (SM) is a strong alkylating agent. Inhalation of SM causes acute lung injury accompanied by severe disruption of the airway barrier. In our study, we tested the acute effects after mustard exposure in an in vitro coculture bronchial model of the proximal barrier. To achieve this, we seeded normal human bronchial epithelial explant-outgrowth cells (HBEC) together with lung fibrobl...
متن کاملEffects of a dual endothelin-1 receptor antagonist on airway obstruction and acute lung injury in sheep following smoke inhalation and burn injury.
Studies have suggested that ET-1 (endothelin-1) is associated with lung injury, airway inflammation and increased vascular permeability. In the present study we have tested the hypothesis that treatment with a dual ET-1 receptor antagonist will decrease airway obstruction and improve pulmonary function in sheep with combined S+B (smoke inhalation and burn) injury. Twelve sheep received S+B inju...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 182 11 شماره
صفحات -
تاریخ انتشار 2010